Parallelizing Subgradient Methods for the Lagrangian Dual in Stochastic Mixed-Integer Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On parallelizing dual decomposition in stochastic integer programming

Preprint ANL/MCS-P3037-0912 For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the master program by using structure-exploiting interior-point solvers...

متن کامل

Dual Decomposition in Stochastic Integer Programming Dual decomposition in stochastic integer programming

We present an algorithm for solving stochastic integer programming problems with recourse, based on a dual decomposition scheme and Lagrangian relaxation. The approach can be applied to multi-stage problems with mixed-integer variables in each time stage. Numerical experience is presented for some two-stage test problems.

متن کامل

Stochastic Dual Dynamic Integer Programming

Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...

متن کامل

Algorithms for Stochastic Mixed-Integer Programming Models

In this chapter, we will study algorithms for both two-stage as well as multi-stage stochastic mixed-integer programs. We present stagewise (resourcedirective) decomposition methods for two-stage models, and scenario (pricedirective) decomposition methods for multi-stage models. The manner in which these models are decomposed relies not only on the specific data elements that are random, but al...

متن کامل

On the augmented Lagrangian dual for integer programming

We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a fixed, large value and still obtain strong duality for pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: INFORMS Journal on Optimization

سال: 2021

ISSN: 2575-1484,2575-1492

DOI: 10.1287/ijoo.2019.0029